151
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Growth Rates of Edge-on Lamellar Crystals Confined in Polymer Thin Films

, &
Pages 2341-2351 | Received 13 Nov 2011, Accepted 27 Feb 2012, Published online: 05 Sep 2012
 

Abstract

The growth rates of edge-on lamellar polymer crystals in variable thickness films were investigated in terms of dynamic Monte Carlo (MC) simulations. The growth rates linearly decreased with decreasing film thickness for the thinner films and were nearly constant for the thicker films. The mean stem lengths (crystal thickness) were also constant in different thickness films. The crystal widths parallel to the film thickness increased more slowly with increasing film thickness in the thinner films than that in the thicker films, indicating they were restrained by the film thickness. We propose that the growth rate of edge-on lamellar crystals in thin films is dominanted by the crystal width in the thinner films and by the crystal thickness in the thicker films; the variation of the film thickness can change the three-dimensional shape of the crystal growth front, also affecting the growth rate of the edge-on lamellar crystal.

Acknowledgment

The authors thank the Doctor Scientific Research Start-up Fund (No. BK201103) of Hubei University of Automotive Technology for financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,107.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.