188
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Mechanical, Water-swelling, and Morphological Properties of Water-swellable Thermoplastic Vulcanizates Based on Polyvinyl Chloride/Crosslinked Sodium Polyacrylate/Chlorinated Polyethylene Blends

, , &
Pages 1322-1340 | Received 09 Jul 2012, Accepted 30 Dec 2012, Published online: 30 May 2013
 

Abstract

A novel water-swellable rubber (WSR) was prepared by dynamically vulcanizing polyvinyl chloride (PVC)/chlorinated polyethylene (CPE) blends where a crosslinked poly(sodium acrylate) (CPNaAA) was used as a super water-absorbent resin and dispersed in the CPE rubber. The mechanical, water-swelling, and morphological properties were investigated. The results showed that the dynamically vulcanized PVC/CPNaAA/CPE blends exhibited obvious elastomeric behavior and could be considered as thermoplastic vulcanizates (TPVs). The PVC/CPNaAA/CPE TPVs showed strong water-swelling ability, with the water-swelling ratio of the PVC/CPNaAA/CPE TPV with 30/60/70 weight ratio reaching 2400% at 200 h immersion. Moreover, compared with the first water-swelling behavior, the second and third water-swelling behaviors of the TPVs showed significantly improved water-swelling ratio and a remarkable decrease of weight loss. Morphological study showed that the interface interaction between the CPNaAA and CPE was weak. The CPNaAA particles in the blends could be separated and even be pulled out from the matrix under tensile stress, leading to the formation of suspended CPNaAA particles on the fracture surface of PVC/CPNaAA/CPE TPVs. The surface of the dried TPVs was rough and significant cavities could be found. The dynamic mechanical properties were investigated and the TPVs showed the typical Payne effect.

Acknowledgment

The work was funded by a Project of Shandong Province Higher Educational Science and Technology Program (J12LA15), the Science and Technology Development Project of Qingdao (12-1-4-3-(9)-jch), the Natural Science Foundation of Shandong Province (ZR2012EMM002), and the National Natural Science Foundation of China (51272115).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,107.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.