143
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Statistical Aspects of Tensile Fracture of Isotactic Polypropylene

&
Pages 1053-1065 | Received 16 May 2014, Accepted 28 May 2015, Published online: 21 Aug 2015
 

Abstract

The fracture behavior of isotactic polypropylene (iPP) specimen with double-notched shape under a fixed elongation speed at room temperature is described. Over 100 tensile tests were performed, and the statistic fracture data were obtained for the tensile condition. The statistical data of fracture were obtained by examining the time to fracture, the ultimate stress, and the tensile toughness (determined from the area under the nominal stress–strain curve from the origin to the fracture point). The probability density distributions for time to fracture, the ultimate stress, and the tensile toughness approximately followed the normal Gaussian statistics. Using a linear relationship between stress and elongation time near the fracture point, we can apply a static Kalman filter system to the present fracture data to determine a conditional probability density function. As a consequence, this application makes it possible to predict the probability of fracture of iPP under any static condition.

Acknowledgment

The authors would like to express their gratitude to Emeritus Professor C. G. Sell of Nancy, France, for his thoughtful comments and encouragement to accomplish this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,107.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.