428
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Rheological Properties and Microstructures of Hydroxyethyl Cellulose/Poly(Acrylic Acid) Blend Hydrogels

, &
Pages 1132-1143 | Received 26 Mar 2014, Accepted 28 May 2015, Published online: 21 Aug 2015
 

Abstract

A simple in-situ method was introduced to prepare hydroxyethyl cellulose/poly(acrylic acid) (HEC/PAA) blend hydrogels by forming an interpenetrating network (IPN). Storage modulus (G′) and loss modulus (G″) were improved dramatically compared to HEC. To prove that hydrogen bonds and chemical crosslinking played major roles in improving the hydrogel strength and toughening, and to optimize the components of HEC/PAA blend hydrogels, a series of blend hydrogels with different ratios of HEC to PAA were designed and the corresponding Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), rheological tests, and swelling properties were compared. Crosslinked HEC/PAA blend hydrogel (mol/mol = 1:1) showed the best properties appropriate for opening up biomedical applications of the hydrogel.

Funding

This work was financially supported by the National Natural Science Foundation of China (NSFC-21006072), and the Natural Science Foundation of Tianjin (No. 11JCYBJC04400).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,107.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.