238
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

In-Silico Study on the Interaction of Saffron Ligands and Beta-Lactoglobulin by Molecular Dynamics and Molecular Docking Approach

Pages 73-84 | Received 18 Sep 2015, Accepted 07 Nov 2015, Published online: 22 Dec 2015
 

ABSTRACT

Safranal, crocetin, and dimethylcrocetin are secondary metabolites found in saffron and have a wide range of biological activities. An investigation of their interaction with a transport protein, such as β-lactoglobulin (β-lg), at the atomic level could be a valuable factor in controlling their transport to biological sites. The interaction of these ligands and β-lg as a transport protein was investigated using molecular docking and molecular dynamics (MD) simulation methods. The molecular docking results showed that safranal and crocetin bind on the surface of β-lg. However, dimethylcrocetin binds in the internal cavity of β-lg. The β-lg affinity for binding saffron ligands decreases in the following order: crocetin > dimethylcrocetin > safranal. The analysis of MD simulation trajectories showed that the β-lg and β-lg–ligand complexes became stable at approximately 3000 ps and that there was little conformational change in the β-lg–safranal and β-lg–dimethylcrocetin complexes over a 10-ns timescale. In addition, the profiles of atomic fluctuations showed the rigidity of the ligand binding site during the simulation time.

Funding

Support of this work from the University of Isfahan (Iran) (Grant No. 920916) is gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,107.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.