170
Views
13
CrossRef citations to date
0
Altmetric
Articles

Polyelectrolyte Nanocomposite Membranes Using Surface Modified Nanosilica for Fuel Cell Applications

, , &
Pages 383-394 | Received 20 Sep 2016, Accepted 17 Mar 2017, Published online: 25 May 2017
 

ABSTRACT

The preparation and characterization of a new type of nanocomposite polyelectrolyte membrane (PEM), based on Nafion® (E. I. du Pont de Nemours and Co., Ltd., for its copolymer of tetrafluoroethylene and perfluorinated vinyl ether) and sulfonic acid (-SO3H) or phosphotungstic acid (PWA) modified nanosilica (Si-SO3H or Si-PWA, respectively), for direct methanol fuel cell (DMFC) applications are described. Physical characteristics of these manufactured nanocomposite membranes were investigated by scanning electron microscopy (SEM), water uptake, methanol permeability and ion exchange capacity, as well as proton conductivity. The Nafion®/Si-PWA and Nafion®/Si-SO3H membranes showed higher proton conductivity, lower methanol permeability and, as a consequence, a higher selectivity parameter, in comparison to the neat Nafion® or Nafion®/pristine nanosilica membranes. The obtained results indicated that both the Nafion®/Si-PWA and Nafion®/Si-SO3H membranes could be utilized as promising polyelectrolyte membranes for direct methanol fuel cell applications.

Acknowledgment

The authors thank Mr. M. M. Hasani for helpful fundamental discussions.

Funding

This work was supported by Shiraz Branch, Islamic Azad University, Shiraz, Iran.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,107.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.