195
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Characterization of Chitosan-Gelatin Blend Scaffolds

, , , , &
Pages 634-644 | Received 12 Sep 2018, Accepted 29 Apr 2019, Published online: 08 Jun 2019
 

Abstract

Vacuum freeze-drying was used to prepare chitosan-gelatin (CG) scaffolds from hydrogels, with glutaraldehyde (GA) used as a crosslinker. The effects of the changes in volume ratios of the 2 wt% CG and GA solutions on scaffold performance were studied. The ratio of chitosan to gelatin solution volumes, vr(C/G), was adjusted to 1/2 or 1/1, with the 0.25 wt% GA volume at 3, 6, or 8% of the CG/GA volume. Six groups of CG scaffolds were fabricated and the scaffolds performance compared. After the cells were incubated for 4 days, hematoxylin eosin (HE) staining was used to observe the spreading of human skin keratinocyte (HaCaT) cells on these scaffolds, with the MTT method also used to detect the cells proliferation. The inhibition zone method was used on cells cultures to determine the antibacterial properties of the scaffolds against S. aureus and E. coli. Scaffolds were also examined for degradation in lysozyme and their compression properties were tested after degradation. The results showed that the HaCaT cells grew well on these scaffolds and proliferated significantly, indicating that these scaffolds possessed good cytocompatibility. With increased chitosan volume, the antibacterial properties of the scaffolds against S. aureus increased, however, there was no significant change in the antibacterial properties toward E. coli. Increased volumes of chitosan and GA decreased the scaffolds degradation rates and improved the elastic compressive moduli of the scaffolds after degradation. The scaffolds in the vr(C/G) = 1/1, 8% GA group have potential application prospects in the field of skin regeneration.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China (No. 31870934), National Natural Science Foundation of China (No. 11502157) and Foundation of Shanxi Key Laboratory of Material Strength & Structural Impact (No.sxmssi-201802#).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,107.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.