139
Views
0
CrossRef citations to date
0
Altmetric
Articles

Fabrication of Sodium Alginate Porous Scaffolds for Heavy Metal Ion Removal from Aqueous Solution

, , , , , & show all
Pages 1350-1365 | Received 06 Jun 2022, Accepted 28 Jan 2023, Published online: 06 Mar 2023
 

Abstract

The adsorption method is recognized as an effective technology for dealing with water pollution caused by heavy metal ions. For a highly efficient, eco-friendly and low-cost adsorption process, the adsorbent is the deciding factor. In this study a porous sodium alginate scaffold was prepared by the method of freeze-drying as a heavy metal ion adsorbent. The parameters affecting the morphology and adsorption characteristics of the scaffolds were investigated. The results showed that sodium alginate porous scaffolds could be prepared under the concentration in the range of 1–5%. After calcium ion pre-crosslinking, the sodium alginate scaffold was used to adsorb the heavy metal ions of Cd2+, Pb2+, and Cu2+ from aqueous solution and the maximum adsorption efficiency under optimized adsorption conditions were 99.43%, 73.67%, and 59.25%, respectively. At the same time, the scaffold could be used for desorption and recycling. After five cycles, the removal percentages of Pb2+, Cd2+, and Cu2+ by the sodium alginate scaffold decreased by 25%, 25%, and 16%, respectively.

Acknowledgements

This research was supported by the Longyan Science and Technology Project fund (Grant No. 2019LYF7006) and the Fujian Provincial Natural Science Foundation of China (Grant No. 2019J01847).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,107.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.