741
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

Evaluation of Attentional Demands During Motor Learning: Validity of a Dual-Task Probe Paradigm

, , &
Pages 95-105 | Received 20 May 2013, Accepted 18 Nov 2013, Published online: 21 Jan 2014
 

ABSTRACT

The aim of this study was to examine the validity of a 2-choice audio-vocal reaction time (RT) probe task for measuring the changes in attentional demand during practice and learning of a discrete motor task. Twenty participants practiced the motor task across 3 days and were probed with the RT task during either the preparation or execution phase of the primary task. As practice progressed, participants improved in the primary task performance and shortened the RTs to the probe task. This indicated that less attention was required to plan and execute the movement and suggested that the RT probe task was a sensitive and valid tool to measure changes in attentional demands across practice. The authors implemented several additional experimental controls to address possible confounders including unintentional learning of the probe task, primary-secondary task trade-off effects, and compliance with task priority instructions. These experimental controls further ensured the validity of the probe paradigm and interpretability of the dual-task cost findings. Our experimental methods provided confirmatory evidence for the validity of the 2-choice RT task as a means to assess attentional demands during motor learning.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 162.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.