403
Views
3
CrossRef citations to date
0
Altmetric
Article

Improvement of thermal conductivity by adding tungsten and/or copper wire in F82H

ORCID Icon, , ORCID Icon &
Pages 216-221 | Received 13 Apr 2021, Accepted 26 Jul 2021, Published online: 30 Aug 2021
 

ABSTRACT

The F82H, which is one of reduced activation ferritic/martensitic steels, is a strong candidate structure material for fusion reactor because of its satisfactory mechanical property and high swelling resistance in the operating temperature range. One disadvantage of F82H would be its low thermal conductivity as a structural material for divertor. In this study, we have fabricated several F82H-based composite materials by the spark plasma sintering to improve its thermal conductivity by adding tungsten and/or copper wires. F82H-20 vol.% W and F82H-10 vol.% W-10 vol.% Cu composites included reaction layers at the interface between tungsten wire and F82H matrix, resulting in the decrease in ductility and tensile strength because of the formation of tungsten carbide. On the other hand, F82H-20 vol.% Cu composite, sintered for 120 min at 1000°C, included no reaction layers and showed the highest thermal conductivity with a high relative density. Furthermore, it showed a great tensile property, which is comparable to that of the original F82H.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 97.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.