273
Views
1
CrossRef citations to date
0
Altmetric
Article

Phase stability of Cs-Si-O and Cs-Si-Fe-O compounds on stainless steel

, &
Pages 345-356 | Received 22 Mar 2021, Accepted 18 Aug 2021, Published online: 13 Oct 2021
 

ABSTRACT

During a severe accident (SA) such as the Fukushima Daiichi Nuclear Power Plant accident, fission products (FPs) can be retained on the surface of structural materials in reactors. Cesium (Cs) is an important FP, and various Cs compounds such as Cs silicates are formed on the surface of stainless steel (SS) in a reactor during a SA. We calculated total energies of Cs-Si-O compounds for evaluation of phase stability within an adiabatic approximation. The calculations indicate that Cs6Si10O23 is the most stable of the Cs-Si-O compounds. We calculated, furthermore, total energies of Cs-Si-Fe-O compounds. These calculations indicate that Cs-Si-Fe-O compounds are more stable than C-Si-O compounds and that CsSi2FeO6 is the most stable of these C-Si-O and Cs-Si-Fe-O compounds within an adiabatic approximation. The results of our present calculations and our previous experiments lead to the conclusion that Cs-Si-Fe-O compounds can be stably formed on SS surface by Cs chemisorption.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 97.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.