89
Views
0
CrossRef citations to date
0
Altmetric
Article

Power profile analysis of criticality accidents involving fissile solution boiling with considering evaporation

ORCID Icon &
Pages 958-966 | Received 08 Sep 2023, Accepted 27 Nov 2023, Published online: 07 Dec 2023
 

ABSTRACT

The total fission energy released in a criticality accident involving fissile solution boiling tends to be high because the relatively high fission power continues during boiling. Simulating fission power change correctly during boiling seems essential to estimate the total fission energy. Fission power during boiling changes depending on fissile concentration and volume as the solution evaporates. In this study, we investigated the effect of concentration and volume change on estimated total fission energy for a long time of boiling. We introduced a model calculating the evaporation of fissile solution into the modified quasi-steady-state method to simulate power change during boiling. Three CRAC experiments and the Idaho Chemical Processing Plant (ICPP) criticality accident in 1959 were analyzed. As a result, the calculated energy considering concentration and volume change during boiling reproduced the measured energy well.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 97.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.