Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 98, 2000 - Issue 19
161
Views
48
CrossRef citations to date
0
Altmetric
Original Articles

Effect of short and long range forces on the structure of water. II. Orientational ordering and the dielectric constant

&
Pages 1505-1520 | Received 09 Feb 2000, Accepted 08 May 2000, Published online: 01 Sep 2009
 

Abstract

The effects of short and long range interactions on the structure of water, both spatial and orientational, has been studied in detail by computing the full pair correlation function, site-site correlation functions, 2-dimensional site-site correlation functions in the (r OO, r OH) and (r OO, r HH) planes, dipole-dipole correlation function, radial Kirkwood g factor, and the dielectric constant. Two model potentials, the T1P4P and ST2, and their short range versions have been considered at ambient and elevated temperatures and under supercritical conditions. The Ewald summation under different conditions has been used to investigate also their effect on results. An analysis of the results shows that although all site-site correlation functions for the short and long range systems are similar, the orientational ordering in systems of different range may be considerably different, this evidence being provided mainly by the dipole-dipole correlation function and the radial Kirkwood factor. The orientational ordering is only short range in long range systems, whereas in short range systems the hydrogen bonding gives rise to a damped long range regular pattern of alignment. Nonetheless, the resulting dielectric constants for the short and long range systems coincide within the combined error bars. All findings are more pronounced at low temperatures but otherwise they are only marginally temperature and density dependent.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.