Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 98, 2000 - Issue 23
63
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Coupled ab initio potential energy surfaces for the two lowest 2A′ electronic states of the C2H molecule

, , , &
Pages 1925-1938 | Received 14 Mar 2000, Accepted 19 Jun 2000, Published online: 01 Sep 2009
 

Abstract

Realistic two-valued potential energy surfaces for the reaction C(3P) + CH(X2Π) → C2 + H have been constructed from a set of high level ab initio data describing the first two 2A′ electronic states of the C2H system. These states have linear equilibrium configurations, known as the X 2Σ+ and A2Π states, and are coupled by a conical intersection. They lead to the formation of C2(X1Σ+ g) and C2(a3Πu) considering an adiabatic dissociation process. The ab initio calculations are of the multireference configuration interaction variety and were carried out using a polarized triple-zeta basis set. Using the ab initio adiabatic energies and the matrix elements of the dipole moment, a 2 × 2 diabatic representation of the electronic Hamiltonian was built. Each element of this Hamiltonian matrix was expressed within the double many-body expansion (DMBE) scheme which is based, in this case, on the extended Hartree-Fock approximate correlation energy model (EHFACE). The analytical adiabatic potential energy surfaces are then obtained as the eigenvalues of this matrix, and display correctly the Σ/Π conical intersection. Moreover, the non-adiabatic couplings given by our analytical model are compared with the ab initio ones, and good qualitative agreement is observed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.