Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 99, 2001 - Issue 6
24
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Light scattering, origin invariant multipole moments and molecular property tensors: the case of electric-field-gradient-induced birefringence

Pages 547-558 | Received 19 Sep 2000, Accepted 06 Nov 2000, Published online: 16 Nov 2009
 

Abstract

A comparison of semiclassical and quantum versions of molecular light scattering theory at finite temperatures is presented. A general formulation of the semiclassical radiation model is developed to the point where its relationship to the corresponding QED formalism can be established: the classical scattered electric field is proportional to the same R-matrix element as that obtained from QED for the photon scattering amplitude. The result is valid for non-resonant scattering at T = 0. The semiclassical theory conventionally also inherits aspects of a classical molecular model, principally origin-dependent molecular multipole moments. Origin independent multipoles, and corresponding response functions can be defined if the theory is cast in terms of centre-of-mass and translation invariant internal coordinates. Such a choice of coordinates brings molecular light scattering theory into line with the theory of the molecular Schrödinger equation. This is illustrated for the case of a diatomic molecule. A specific application of these results of current interest is electric-field-gradient induced birefringence (EFGB) for which there are four competing theories in the literature. In this paper we examine the treatment of finite temperature effects in two semiclassical accounts of EFGB in polar molecules and identify a likely source of the discrepancy between them revealed in a recent ab initio computational study.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.