Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 100, 2002 - Issue 11
117
Views
38
CrossRef citations to date
0
Altmetric
Original Articles

Electrostatic interactions between molecules from relaxed one-electron density matrices of the coupled cluster singles and doubles model

, &
Pages 1723-1734 | Received 22 Jul 2001, Accepted 15 Oct 2001, Published online: 01 Dec 2009
 

Abstract

The influence of electron correlation on the electrostatic interaction between closed shell molecules is studied using the relaxed electron densities of the coupled cluster singles and doubles (CCSD) model. The corresponding CCSD one-electron density matrices are efficiently computed without full four-index transformation by employing the generalized exchange and Coulomb operator technique. Using several representative van der Waals and hydrogen bonded complexes it was found that in most cases the convergence of the M⊘ller-Plesset expansion of the electrostatic energy, restricted to single, double and quadruple excitations, is satisfactory and the fourth-order triple excitation term is more important than the sum of the fifth- and higher-order contributions from CCSD theory. The importance of the CCSD correlation correction to the electrostatic energy was gauged by comparison of the total interaction energy computed by symmetry-adapted perturbation theory (SAPT) and by the super-molecular CCSD(T) approach (coupled cluster singles and doubles model with a non-iterative inclusion of triple excitations). Except for the CO and N2 dimers, very good agreement between the two sets of results is observed. For the difficult case of the CO dimer the difference between the SAPT and CCSD(T) results can be explained by the truncation of the SAPT expansion for the dispersion energy at second order in the intramonomer correlation operator.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.