Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 100, 2002 - Issue 7
123
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

A SAFT model for associating Lennard-Jones chain mixtures

Pages 1033-1047 | Received 17 Aug 2001, Accepted 06 Nov 2001, Published online: 23 Nov 2009
 

Abstract

The recently proposed equation of state of statistical associated fluid theory (SAFT) is extended to associating Lennard-Jones (LJ) chain mixtures. In this extension, a new radial distribution function (RDF) for LJ mixtures is derived around the LJ potential size (σ ij ). The RDF expression is completely analytical and real. Comparisons with computer simulation data under various conditions indicate that the RDF is very accurate up to its first peak. The new RDF, together with a previously established equation of state for LJ mixtures, is employed to study LJ chain mixtures by combining with Wertheim's first-order perturbation theory. The resulting equation of state is tested satisfactorily against computer simulation data for both non-associating and associating LJ chain mixtures, with a performance similar to its predecessors for pure LJ chains and LJ mixtures. The SAFT model is uniquely featured by being totally mixing-rule free and by being adjustable at both chain bonding and association sites. Moreover, the SAFT model is formulated very generally, so that it is applicable to both homonuclear and heteronuclear chain mixtures.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.