Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 100, 2002 - Issue 22
81
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

An ab initio molecular orbital study of the electronically excited and cationic states of the ozone molecule and a comparison with spectral data

&
Pages 3601-3614 | Received 13 May 2002, Accepted 09 Jul 2002, Published online: 16 Nov 2009
 

Abstract

A number of valence and Rydberg, singlet and triplet excited states for ozone in the excitation energy range 1–12eV have been calculated by large scale CI methods preceded by MCSCF studies. A comparison of the theoretical intensity envelope with the VUV + EELS spectrum has been made. The present work supports the assignments for the Huggins + Hartley bands as having two electronic origins, 2 1A1 and 1 1B2. The experimental ∼ 9.3eV and ∼ 10.2eV bands of the VUV spectrum must have adventitious superposition of valence states on Rydberg transitions, because the high oscillator strengths of the valence states cannot be attributed to the 8.8eV broad band. A number of new valence and Rydberg states have been calculated, and these lead to the conclusion that the experimental 9–11 eV VUV spectral range in particular must yield more experimental states than the few so far identified. This suggests a major need for more sophisticated methods of experimental study for the excited state manifolds. The use of various MCSCF/CI studies of the vertical cationic states, supports the IP order as 2A1 < 2B2 < 2A2. A re-analysis of the 12–13.4eV range of the UV-photoelectron band has been performed, with a view to determining the adiabatic IPs more accurately. The present work suggests that the adiabatic IP2 lies at 12.86eV, slightly lower than has been assumed, with consequential effect on the analysis of the VUV spectrum near 9.4eV.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.