Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 101, 2003 - Issue 6
44
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Computer simulation of cavity pair distribution functions of hard spheres in a hard slit pore

&
Pages 805-815 | Received 18 Jul 2002, Accepted 16 Sep 2002, Published online: 18 Nov 2009
 

Abstract

We describe efficient Monte Carlo computer simulation techniques to calculate conditional distribution functions for pairs of hard-sphere (HS) cavities in a hard slit pore of width L, n* (z 1,z 2,r), and use these as an efficient route to calculating the corresponding dimensionless excess chemical potentials μ e (z 1,z 2,r). zi is the distance of an HS centre from a (specified) wall and r is the distance between the cavity centres. This is the first calculation of such functions, which are of interest in their own right and provide data for the testing of theories, in addition to providing data for a simple model for the infinite dilution behaviour of a polyatomic solute in a simple molecularly confined solvent. Results are presented for special cases for the cavity functions n* (z 1,z 2,r) which occur when the spheres are in the same plane, when the line of sphere centres is perpendicular to the walls, and when the spheres are in contact. We compare results obtained using the Kirkwood superposition approximation in conjunction with results obtained from the computer simulation data using the first member of the BGY integral equation hierarchy. The approximation is found to be exact in certain limiting geometrical situations, but in general is quantitatively poor.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.