Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 101, 2003 - Issue 11
42
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

A simulation study of vibrational relaxation of I3 in liquids

&
Pages 1641-1649 | Received 08 Oct 2002, Accepted 10 Dec 2002, Published online: 18 Nov 2009
 

Abstract

The temperature dependence of the vibrational relaxation of a flexible model of triiodide in a Lennard-Jones solvent (xenon) has been studied using equilibrium molecular dynamics simulations. The internal dynamics of the ion is calculated from a previously published semi-empirical valence bond model with a limited number of basis states. Vibrational decorrelation rates of the symmetric and antisymmetric stretching modes were found from the time correlation functions of the normal coordinate velocities and the vibrational energy relaxation rates from the time correlation functions of the kinetic energy in each mode. The vibrational dephasing rates and the energy relaxation rates decrease slowly as the temperature is lowered and do not show a discontinuity when the fluid solidifies, although the reorientational diffusion rates change rapidly at low temperatures. In order to interpret the results, perturbation theory expressions for the relaxation rates were evaluated for simulations of a rigid model of the ion and found to agree well with the direct observations. These showed that, unusually, both the solvent force and its derivative, the solvent potential curvature, contribute to the dephasing of the symmetric mode. The relevant fluctuation correlation times are very short, which may explain the insensitivity of the vibrational relaxation to the state of the solvent.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.