Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 101, 2003 - Issue 12
28
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Density dependence of the electric-field-gradient induced birefringence of the helium, neon and argon gases

, &
Pages 1851-1865 | Received 27 Nov 2002, Accepted 25 Feb 2003, Published online: 23 Nov 2009
 

Abstract

An ab initio investigation of the density dependence of the electric-field-gradient induced birefringence (EFGB) for the noble gases helium, neon and argon is presented. To determine the second coefficient in the virial expansion of the molecular EFGB constant mQ, the effect of two-body interactions has been studied by computing the internuclear dependence of the molecular quadrupole moment and of the dipole-dipole-quadrupole and dipole-magnetic dipole-dipole hyperpolarizabilities of the van der Waals dimers. A full-configuration-interaction approach as well as the coupled cluster singles and doubles and the coupled cluster singles and doubles plus perturbative triples approximations have been adopted, and extended basis sets including midbond functions have been employed. A semi-classical integration yields the virial coefficients. The effect of density for standard experimental conditions is found to be of the order of a few tens of parts per million for helium and neon, and of the order of a few parts per thousands for argon at low temperatures, and thus not detectable with present apparatus.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.