Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 102, 2004 - Issue 4
109
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Modelling of mass-transfer induced instabilities at liquid–liquid interfaces based on molecular simulations

&
Pages 331-339 | Received 28 Apr 2003, Accepted 27 Nov 2003, Published online: 19 Aug 2006
 

Abstract

Interfaces and especially mass transfer across interfaces are of great importance in many fields of chemical engineering. Interfacial convection, which is generally called the Marangoni effect, may improve mass transfer across interfaces quite drastically and has not been investigated adequately in detail. In order to investigate the influence of mass transfer on a liquid–liquid interface molecular computer simulations have been performed. Since many molecules have to be considered for a significant modelling of the interface, cubic lattice systems have been chosen for the simulation which proceeds according to the Monte-Carlo scheme. The parameters that describe the thermodynamic and transport properties resemble those of realistic standard EFCE test systems for extraction. Results of various Monte-Carlo simulations show that under certain conditions mass transfer across interfaces induces the formation of nano droplets in the close vicinity of the interface. The different combinations of the nano droplet behaviour due to attractive or repulsive long-range forces together with the characteristics of coalescence may lead to different macroscopic interfacial instabilities such as spontaneous emulsification or eruptions. Based on diffusive and thermodynamic properties of the chosen lattice system a first stability criterion which allows the prediction of the onset of nano droplet formation is developed. The theoretical results compare well with experimental observations at a single drop and in a two-phase cell where the instabilities are investigated optically via Schlieren optics.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.