Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 103, 2005 - Issue 1
136
Views
58
CrossRef citations to date
0
Altmetric
Original Articles

Towards a unified view of fluids

Pages 59-76 | Received 01 Apr 2004, Accepted 20 Jul 2004, Published online: 21 Feb 2007
 

Abstract

It has traditionally been believed that, unlike normal fluids whose structural properties are determined primarily by the intermolecular short-range repulsive interactions, the properties of polar and associating fluids are strongly affected by the long-range Coulombic interactions. In the course of investigations to determine the primary driving forces governing the behaviour of various (non-simple) fluids, and hence to gain a deeper understanding of the molecular mechanisms leading to the development of theoretically based simple models and theory, extensive and systematic computer simulations have been performed on typical quadrupolar (carbon dioxide), dipolar (acetone and acetonitrile), and associating (hydrogen fluoride, methanol, and water) fluids using the available realistic effective pair potentials and their variants involving forces of different ranges. In addition to the main structural characteristics (one- and two-dimensional site–site correlation functions, local g factors, and radial slices through the full pair correlation function), the dielectric constants and the thermodynamic properties (internal energy and pressure) of both the homogeneous liquid and supercritical fluid phases, and vapor–liquid equilibria have also been considered. Furthermore, in the case of water, the diffusion coefficient and viscosity have also been considered along with water at the interface. All the obtained results lead to the unambiguous conclusion that the structure, defined in terms of the complete set of site–site correlation functions, for both polar and associating pure fluids is governed by the same molecular mechanism as for normal fluids, i.e. by the short-range interactions (which, however, may be both repulsive and attractive), whereas the long-range part of the electrostatic forces, regardless of their strength, plays only a marginal role and may be treated as a perturbation only. The consequences of these findings for theory and applications are also discussed.

Notes

The re-parametrized TIP5P model Citation[44].

The shear viscosity is related to the time autocorrelation functions of the off-diagonal elements of the pressure tensor, P ij, and the diffusion coefficient to the time autocorrelation function of the centre-of-mass velocity, v.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.