Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 104, 2006 - Issue 10-11: A Special Issue in Honour of Professor Keith McLauchlan
132
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Effect of spin configuration on the reactivity of cytochrome c immobilized in mesoporous silica

, , &
Pages 1635-1641 | Received 14 Oct 2005, Accepted 01 Dec 2005, Published online: 28 Nov 2010
 

Abstract

Cytochrome c (cytc), a heme protein with a positive electric charge, is immobilized in the nanochannels of mesoporous silica (MPS) by either electrostatic forces or covalent bonding. The electrostatic interaction between cytc and MPS arises from the introduction of aluminum into the framework of MPS to produce a negative charge on the porous surface (Al-MPS). The covalent bonding arises from the binding between the heme iron center and the –SH group of mercaptotriethoxysilane in thiol-functionalized MPS (MPS-SH). The nanochannels of MPS provide a confining space that can prevent cytc from protein unfolding and preserve its activity. Cytc immobilized in Al-MPS exists in a high-spin state, as inferred from ESR and UV–Vis studies. This is different from native cytc, which shows primarily the low-spin state. The high-spin state arises from the replacement of the Met-80 ligands of heme Fe(III) by water or silanol groups on the silica surface, which can open up the heme groove for ready access of oxidants to the iron center and facilitate catalytic activity. MPS-SH-supported cytc can exist in both high- and low-spin states. The low-spin state arises from the replacement of the axial ligands of heme Fe(III) by the –SH group, which can result in poisoning of the active site and reduce the catalytic activity with respect to the decomposition of hydroperoxides. In ESR spin trapping experiments, we show that cytc catalyzes homolytic cleavage of the O–O bond of hydroperoxide and generates a protein cation radical (g = 2.00). A possible mechanism for the MPS-cytc catalytic oxidation of hydroperoxide is proposed based on a spectroscopic characterization of the system.

Acknowledgement

This work was supported by a grant from the Taiwan–AFOSR Nanoscience Initiative.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.