Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 104, 2006 - Issue 8: A Special Issue in Honour of Professor Robert A. Harris
84
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Lattice–Boltzmann study of the transition from quasi-two-dimensional to three-dimensional one particle hydrodynamics

&
Pages 1283-1297 | Received 28 Jul 2005, Accepted 31 Jan 2006, Published online: 15 Dec 2010
 

Abstract

We report the results of a study designed to categorize the hydrodynamics of a quasi-two-dimensional system as either a 2D or 3D fluid. The characterization is based on the asymptotic decay of the velocity autocorrelation functions for different modes of motion and different boundary conditions at the enclosing walls. Our results show that for the case of no-slip boundary conditions the long time decay corresponds to neither 2D or 3D behaviour, nor anything in-between. The no-slip walls cause the long time tail of the velocity autocorrelation functions to have an exponential decay, more in agreement with Langevin model predictions. The free-slip boundary conditions create no-friction conditions for the tangential flow, and no-slip conditions for the perpendicular flow. The tangential component of the flow behaves like flow in 2D, but the perpendicular flow is hindered. As a result, the effect of the free-slip walls on the particle motion depends on the particular mode of motion. For perpendicular rotation where there is no flow perpendicular to the walls and for parallel translation where the perpendicular flow component is weak, we retrieve a 2D like decay for the autocorrelation functions. When the greatest part of the flow is in the perpendicular direction, the distinction between the no-slip and free-slip boundary is small, as in perpendicular translation. For the case of parallel rotation, the situation is more complicated as the perpendicular and tangential flows are more or less balanced, thus the no-slip boundary conditions slow down and speed up the autocorrelation decay. In the net result, the slowing down shows up in the increased diffusion coefficient, but the autocorrelation function shows a faster long time decay. As the plate separation decreases, the balance between the two contributions shifts and the diffusion coefficient begins to fall with decreasing separation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.