Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 104, 2006 - Issue 22-24: Seventh Liblice Conference on the Statistical Mechanics of Liquids
80
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Self-diffusivity and velocity autocorrelation functions for xenon in NaY using memory kernels

, &
Pages 3809-3819 | Received 14 Jul 2006, Accepted 30 Oct 2006, Published online: 04 Dec 2010
 

Abstract

The applicability of the memory function formalism to the study of the dynamics of rare gas atoms in zeolite NaY is assessed. Solutions to the memory equation are obtained by solving the memory kernel with different analytic closure schemes. Inputs to the models are the frequency moments, which are obtained from molecular dynamics simulations. The model predictions are compared with the results obtained using molecular dynamics simulations for Xe in zeolite NaY at loadings of one atom/cage at different temperatures. Predictions from the secant hyperbolic memory kernel were found to yield the most accurate of the various models investigated, with quantitative predictions above temperatures of 300 K. Since the frequency moments can be computed in a Monte Carlo simulation, the method outlined here suggests an alternate route to the dynamics of confined fluids.

Acknowledgements

We would like to thank C. R. Kamala for assisting with the molecular dynamics simulations, and Scott Auerbach and S. Yashonath for useful discussions during this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.