Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 105, 2007 - Issue 1
128
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Electroweak interactions in chiral molecules: two-component density functional theory study of vibrational frequency shifts in polyhalomethanes

&
Pages 41-49 | Received 09 Oct 2006, Accepted 13 Nov 2006, Published online: 21 Feb 2007
 

Abstract

In this paper, a two-component density functional theory study of parity violation-induced vibrational frequency shifts in chiral polyhalomethanes is reported and the prospects to detect in these compounds, for the first time, signals of parity violation in molecular systems are discussed. The recent synthesis of enantiomerically enriched CHClFI has renewed interest in examining electroweak corrections for this class of compounds. Utilizing a (quasi-relativistic) two-component zeroth-order regular approximation approach to molecular parity violation, together with density functional theory, the parity violation-induced relative vibrational frequency splittings Δ νpv/ν between the C–F stretching fundamental of polyhalomethane enantiomers are computed. The relative splitting in CHClFI is raised compared with CHBrClF, for which upper bounds were determined experimentally. To facilitate measurement, molecules possessing more pronounced relative splittings are desirable. Therefore, the chiral methane derivative CHAtFI is considered, which exhibits a significantly larger electroweak contribution that induces a vibrational frequency splitting on the order of the experimental resolution previously reported for CHBrClF. Employing compounds containing heavy nuclei such as astatine may thus be necessary with present detection methods.

Acknowledgements

Discussions with Jürgen Stohner and Sophie Nahrwold are gratefully acknowledged. This work was supported by the Volkswagen Foundation. We also acknowledge the HLRN and the CSC Frankfurt for access to their computing facilities.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.