Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 105, 2007 - Issue 10
122
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Theory of phase equilibria for model mixtures of n-alkanes, perfluoroalkanes and perfluoroalkylalkane diblock surfactants

&
Pages 1319-1334 | Received 12 Jan 2007, Accepted 21 Feb 2007, Published online: 28 Aug 2007
 

Abstract

An extension of the SAFT-VR equation of state, the so-called hetero-SAFT approach [Y. Peng, H. Zhao, and C. McCabe, Molec. Phys. 104, 571 (2006)], is used to examine the phase equilibria exhibited by a number of model binary mixtures of n-alkanes, perfluoroalkanes and perfluoroalkylalkane diblock surfactants. Despite the increasing recent interest in semifluorinated alkanes (or perfluoroalkylalkane diblock molecules), the phase behaviour of mixtures involving these molecules with n-alkanes or perfluoroalkanes is practically unknown from the experimental point of view. In this work, we use simple molecular models for n-alkanes, perfluoroalkanes and perfluoroalkylalkane diblock molecules to predict, from a molecular perspective, the phase behaviour of selected model mixtures of perfluoroalkylalkanes with n-alkanes and perfluoroalkanes. In particular, we focus our interest on the understanding of the microscopic conditions that control the liquid–liquid separation and the stabilization of these mixtures. n-Alkanes and perfluoroalkanes are modelled as tangentially bonded monomer segments with molecular parameters taken from the literature. The perfluoroalkylalkane diblock molecules are modelled as heterosegmented diblock chains, with parameters for the alkyl and perfluoroalkyl segments developed in earlier work. This simple approach, which was proposed in previous work [P. Morgado, H. Zhao, F. J. Blas, C. McCabe, L. P. N. Rebelo, and E. J. M. Filipe, J. Phys. Chem. B, 111, 2856], is now extended to describe model n-alkane (or perfluoroalkane) + perfluroalkylalkane binary mixtures. We have obtained the phase behaviour of different mixtures and studied the effect of the molecular weight of n-alkanes and perfluoroalkanes on the type of phase behaviour observed in these mixtures. We have also analysed the effect of the number of alkyl and perfluoroalkyl chemical groups in the surfactant molecule on the phase behaviour. In addition to the usual vapour–liquid phase separation, liquid–liquid, positive azeotropes, and Bancroft points are found for different mixtures. This rich phase behaviour is a consequence of a delicate balance between the alkyl–alkyl, perfluoroalkyl–perfluoroalkyl, and alkyl–perfluoroalkyl interactions in different molecules. We used the SAFT-VR microscopic description of chain-like systems to analyse the conditions that n-alkane (or perfluoroalkane) + perfluoroalkyalkane mixtures should posses in order to exhibit complete liquid miscibility. Although the model proposed here is chosen to reproduce most of the quantitative features of the phase equilibria of some pure perfluoroalkylalkane diblock surfactants and their mixtures with n-alkanes, this is the first time the SAFT approach has been used to predict the phase behaviour of the mixtures considered here. The lack of experimental data for these systems does not allow us to test the accuracy of our theoretical predictions directly. However, since SAFT has proven to be an excellent approach for the prediction of the phase behaviour of complex mixtures, we expect that the theory will reproduce the most important qualitative trends exhibited by real mixtures.

Acknowledgements

M.C.dR. acknowledges the programme Alßan of the European Union Programme of High Level Scholarships for Latin America (identification number E03D21773VE) for a fellowship. The authors also acknowledge financial support from project number FIS2004-06627-C02-01 of the Spanish Dirección General de Investigación. Additional support from Universidad de Huelva and Junta de Andalucía is also acknowledged. We also thank Clare McCabe and Eduardo J. M. Filipe for useful discussions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.