Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 106, 2008 - Issue 1
637
Views
112
CrossRef citations to date
0
Altmetric
Research Article

Ab initio potential energy curve for the neon atom pair and thermophysical properties of the dilute neon gas. I. Neon–neon interatomic potential and rovibrational spectra

, &
Pages 133-140 | Received 22 Oct 2007, Accepted 29 Nov 2007, Published online: 13 Aug 2008
 

Abstract

A neon–neon interatomic potential energy curve was derived from quantum-mechanical ab initio calculations using basis sets of up to t-aug-cc-pV6Z quality supplemented with bond functions and ab initio methods up to CCSDT(Q). In addition, corrections for relativistic effects were determined. An analytical potential function was fitted to the ab initio values and utilised to calculate the rovibrational spectra. The quality of the interatomic potential function was tested by comparison of the calculated spectra with experimental ones and those derived from other potentials of the literature. In a following paper the new interatomic potential is applied in the framework of the quantum-statistical mechanics and of the corresponding kinetic theory to determine selected thermophysical properties of neon governed by two-body and three-body interactions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.