Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 107, 2009 - Issue 13
64
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Vector correlations of the reaction O(1D) + H2 on the DK potential energy surface

Pages 1331-1337 | Received 24 Nov 2008, Accepted 05 Mar 2009, Published online: 18 Jun 2009
 

Abstract

This paper reports on the angular momentum polarization of the products of the reaction O(1D2) + H2 via the quasiclassical trajectory (QCT) calculation on the DK (Dobbyn and Knowles) potential energy surface (PES). The four polarization-dependent differential cross-sections (PDDCS) (0, 0), (2, 0), (2, 2), (2, −1) were calculated at different collision energies. The vector correlation between reagent velocity and product angular moment, the vector correlation between reagent, product velocity and product angular moment were studied. From the calculations, it can be obtained that the OH products are produced mainly in the plane of H–O–H plane. The changes of OH products angular momentum j ′ direction along with the increasing collision energies were ascribed to the existence of a new reaction mechanism.

Acknowledgement

The author would like to thank Professor K. L. Han for providing the calculation codes.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.