Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 107, 2009 - Issue 19
41
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Quantum chemical study of the ground-state alcoholic complexation of selected dual luminescent compounds

, &
Pages 1987-1996 | Received 11 Mar 2009, Accepted 01 Jun 2009, Published online: 21 Sep 2009
 

Abstract

The ground- and excited-state features of dual luminescent molecules are strongly influenced by the presence of alcoholic additives. Selected ground-state properties of methanol and 1,1,1,3,3,3-hexafluoro-propan-2-ol complexes of 4-aminobenzonitrile, 4-aminopyridine and aniline derivatives were obtained by quantum chemical calculations. The formation enthalpies of the complexes are the most exothermic when the cyano or ring nitrogen interacts with the hydroxyl group of the alcohols. The binding energies are almost doubled when the fluorinated reactant is the hydrogen bond donor. Parallel to the enhancement of the stabilization of the complex, the ground-state dipole moment also increases notably with complex formation. In principle, consideration of this increase is essential in interpretation of the solvatochromatic behaviour of the complexed species.

Acknowledgement

This work was supported by the Hungarian Science Foundation (OTKA T45890 and OTKA T43542).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.