Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 107, 2009 - Issue 22
244
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

14N Pulsed nuclear quadrupole resonance. 4. Two-pulse sequences for the determination of T1 and T2 relaxation times

&
Pages 2419-2430 | Received 04 Feb 2009, Accepted 18 Sep 2009, Published online: 30 Oct 2009
 

Abstract

A general theory, based on density matrix calculations, has been developed for the special case of a two-pulse sequence applied to spin 1 (14N) nuclear quadrupole resonance (NQR) of a powder sample. It is shown that the homolog of the NMR inversion-recovery experiment leads easily to the spin-lattice relaxation time T 1 (associated with the diagonal elements of the density matrix) provided that an appropriate phase cycling is used. Conversely, in spite of two-step phase cycling schemes adapted to spin-spin relaxation measurements, the homolog of the NMR Hahn spin-echo sequence may pose some problems if the results are displayed in the magnitude mode. First, at short decay times, the echo may be corrupted by unwanted signals. Secondly, in that case, the amplitude of the resulting signal can evolve unexpectedly and differently as a function of the phase of the second pulse. Thirdly, at long decay times, the echo maximum occurs earlier than expected. All these problems in principle disappear with a complete four-step phase cycling scheme and the echo decay curve yields reliably the spin-spin relaxation time T 2 (associated with off-diagonal elements). This theory allowed the exploitation of many test experiments performed at different frequencies on hexamethylenetetramine (HMT) and sodium nitrite.

Acknowledgement

This work is part of the ANR project “Instrumentation in Magnetic Resonance” (Grant Blan06-2_139020).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.