Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 107, 2009 - Issue 23-24
69
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Molecular dynamics study of hydrogenated silicon clusters at high temperatures

Pages 2555-2568 | Received 13 Jul 2009, Accepted 18 Oct 2009, Published online: 19 Dec 2009
 

Abstract

This paper reports on a study of the stability of silicon clusters of intermediate size at a high temperature. The temperature dependence of the physicochemical properties of 60- and 73-atom silicon nanoparticles are investigated using the molecular dynamics method. The 73-atom particles have a crystal structure, a random atomic packing, and a packing formed by inserting a 13-atom icosahedron into a 60-atom fullerene. They are surrounded by a ‘coat’ from 60 atoms of hydrogen. The nanoassembled particle at the presence of a hydrogen ‘coat’ has the most stable number (close to four) of Si–Si bonds per atom. The structure and kinetic properties of a hollow single-layer fullerene-structured Si60 cluster are considered in the temperature range 10 K ≤ T ≤ 1760 K. Five series of calculations are conducted, with a simulation of several media inside and outside the Si60 cluster, specifically, the vacuum and interior spaces filled with 30 and 60 hydrogen atoms with and without the exterior hydrogen environment of 60 atoms. Fullerene surrounded by a hydrogen ‘coat’ and containing 60 hydrogen atoms in the interior space has a higher stability. Such clusters have smaller self-diffusion coefficients at high temperatures. The fullerene stabilized with hydrogen is stable to the formation of linear atomic chains up to the temperatures 270–280 K.

Acknowledgements

This study was supported by the Presidium of the Ural Division of the Russian Academy of Sciences within the framework of the Integration Project of the Ural Division-Far East Division of the Russian Academy of Sciences.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.