Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 108, 2010 - Issue 11
100
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Evaluation of bridge function for hard sphere fluid confined in a narrow slit-pore via TMMC Mayer-sampling

, &
Pages 1531-1537 | Received 19 Jan 2010, Accepted 05 Mar 2010, Published online: 23 Jun 2010
 

Abstract

The bridge function required to yield a singlet integral equation (IE) up to the second order in density expansion for the hard sphere fluid confined in a slit-pore is evaluated. The slit-fluid bridge function can be divided into wall-particle bridge diagrams with h b-bond, which were evaluated by recently proposed Transition Matrix Monte Carlo (TMMC) Mayer-sampling method. The bulk-fluid total correlation function h b(r) used in cluster integrals is determined by solution of the bulk-fluid Ornstein–Zernike (OZ) equation with a hypernetted chain closure (HNC). The calculation is performed for the reduced density of bulk fluid in equilibrium with the fluid in slit-pores from 0.3 to 0.7 with narrow slit width of 3.0σ and 4.0σ. The quantity of the slit-fluid bridge function is assessed by comparison of the density profile obtained from the singlet IE theory and the grand canonical Monte Carlo (GCMC) simulation. Good agreement between the proposed approach and the GCMC data is observed. The reduced normal pressure is also calculated, and agrees well with the simulation data at low to medium densities but becomes a little larger at high density. It is expected that the result can be improved by adding higher order bridge coefficients. The direct evaluation of the slit-fluid bridge function seems to be practical since a great improvement of the quality of the singlet IE theory has been achieved for predicting the structural and thermodynamic properties of fluids confined in narrow slit pores.

Acknowledgements

This work was supported by the college of engineering at Nanyang Technological University (Grant Nos. M58120005/M52120043). Computational resources have been provided by the school of chemical and biomedical engineering.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.