Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 108, 2010 - Issue 15
701
Views
48
CrossRef citations to date
0
Altmetric
Research Articles

Exploring the utility of coarse-grained water models for computational studies of interfacial systems

, , &
Pages 2007-2020 | Received 17 Mar 2010, Accepted 14 Jun 2010, Published online: 03 Aug 2010
 

Abstract

Molecular dynamics simulations have become a standard tool for the investigation of biological and soft matter systems. Water models serve as the basis of force fields used in molecular dynamics simulations of these systems. This article reports on an examination of the utility of a set of coarse-grained (CG) water models, with different resolutions, interaction potentials (Lennard–Jones, Morse), and cut-off distances. The relationships between the parameters under specific choices of the above options and the thermodynamic properties, such as density, surface tension, and compressibility, were found to fit simple mathematical equations. The limits of applicability of these CG water models were explored by checking the melting temperature. If a CG site is mapped to one or two real water molecules, a simple model with appropriate combinations of cut-off distances, functional forms, and parameters can be found to simultaneously match the experimental values of density, surface tension, and compressibility under ambient conditions. If more water molecules are included in a CG site, either the melting temperature approaches or surpasses room temperature, or the surface tension and compressibility cannot both be matched simultaneously. In striving for computational efficiency, it is still possible to find a simple CG water model with three water molecules contained in a CG bead that generates a liquid state of water with realistic values of density, surface tension and compressibility at ambient condition, but coarser models are not recommended.

Acknowledgements

This work was funded by Procter & Gamble Co. and NSF. WS is grateful for the support of CREST-JST and the Next Generation Super Computing Project, Nanoscience Program, MEXT, Japan.

Notes

Note

All figures can be viewed in colour online.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.