Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 108, 2010 - Issue 24
904
Views
134
CrossRef citations to date
0
Altmetric
Research Articles

Ab initio pair potential energy curve for the argon atom pair and thermophysical properties for the dilute argon gas. II. Thermophysical properties for low-density argon

, , &
Pages 3335-3352 | Received 22 Jun 2010, Accepted 05 Jul 2010, Published online: 07 Oct 2010
 

Abstract

A recent argon–argon interatomic potential energy curve determined from quantum-mechanical ab initio calculations and described with an analytical representation [B. Jäger, R. Hellmann, E. Bich, and E. Vogel, Mol. Phys. 107, 2181 (2009); 108, 105 (2010)] was used to calculate the most important thermophysical properties of argon governed by two-body interactions. Second pressure, acoustic, and dielectric virial coefficients as well as viscosity and thermal conductivity in the limit of zero density were computed for natural argon from 83 to 10,000 K. The calculated values for the different thermophysical properties are compared with available experimental data and values computed for other argon–argon potentials. This extensive analysis shows that the proposed potential is superior to all previous ones and that the calculated thermophysical property values are accurate enough to be applied as standard values for the complete temperature range of the calculations.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.