Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 110, 2012 - Issue 11-12: Thermodynamics 2011 Conference
1,122
Views
37
CrossRef citations to date
0
Altmetric
Invited Articles

Monte Carlo simulation of carbon monoxide, carbon dioxide and methane adsorption on activated carbon

, , &
Pages 1153-1160 | Received 08 Nov 2011, Accepted 12 Jan 2012, Published online: 16 Feb 2012
 

Abstract

In this study, the adsorption capacity of pure and activated carbon with regard to carbon monoxide (CO), carbon dioxide (CO2) and methane (CH4) gases at 298 K and pressure from 0.01 up to 2.0 MPa has been investigated computationally. Computational work refers to Monte Carlo (MC) simulation of each adsorbed gas on a graphite model with varying density of activation sites. The Grand Canonical Monte Carlo (GCMC) simulation technique was employed to obtain the uptake of each adsorbed gas by considering a graphite model of parallel sheets activated by carboxyl and hydroxyl groups, as observed experimentally. The simulation adsorption data for these gases within the examined carbon pore material are presented and discussed in terms of the adsorbate fluid molecular characteristics and corresponding interactions between adsorbate species and adsorbent material. We found that the simulated adsorption uptake of the examined graphite model under these conditions with regard to the aforementioned fluids increases in the order CO < CH4 < CO2.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.