Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 110, 2012 - Issue 18
126
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Theoretical reason for the lack of influence of 1H–14N cross-relaxation on the water proton T1 NMRD profile in slow tumbling proteins

Pages 2251-2255 | Received 19 Oct 2011, Accepted 02 Mar 2012, Published online: 27 Apr 2012
 

Abstract

For immobilized protein the water proton T 1-NMRD profile displays three enhanced relaxation peaks (QP). For slow tumbling proteins these relaxation peaks are not experimentally observed. However, the theoretically determined QP effect on the amide proton T 1-NMRD profile displays a distorted Lorentzian dispersion profile. The question arises as to whether there is also a distortion of the water-proton T 1-NMRD profile due to QP. The model of Sunde and Halle [J. Magn. Reson. 203, 257 (2010)] predicts a decreasing QP relaxation contribution and, with the aid of a model for tumbling proteins [P.-O. Westlund, Phys. Chem. Chem. Phys, 12, 3136 (2010)], it is shown that the QP effect is absent in water-proton T 1-NMRD profiles for slow tumbling proteins with τR < 1 µs, τI.

Acknowledgements

This work has been financially supported by the Swedish Research Council (VR).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.