Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 111, 2013 - Issue 1
163
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Electron spin polarisation in the photoreduction of xanthone in alcohol: effect of concentration and temperature

&
Pages 157-165 | Received 15 May 2012, Accepted 24 Jun 2012, Published online: 25 Jul 2012
 

Abstract

Time-resolved EPR studies of the hydrogen abstraction reaction of photoexcited xanthone in 2-propanol were carried out as a function of the concentration of xanthone and the sample temperature. The temperature was varied from 22°C to about −30°C, and the concentration from about 0.2 to 4.0 mM. At low temperature or concentration, the observed spectra of the xanthone ketyl radical and the propan-2-olyl radical could be simulated as a superposition of a hyperfine-independent component due to the emissive triplet mechanism and a hyperfine-dependent component due to the S–T0 radical pair mechanism. However, with an increase in the concentration of xanthone, the relative contribution of TM decreases, and, concomitantly, the net absorptive component of only the xanthone ketyl radical increases. As the spin polarisation mechanisms do not predict any concentration dependence, this unusual behaviour is explained by invoking the enhancement of the spin–lattice relaxation rates due to Heisenberg spin exchange occurring at high local concentrations of the radicals. The net absorptive signal is attributed to thermally equilibrated radicals. The observed temperature dependence of the spin polarisation behaviour is similarly explained. The origin of the net absorptive signal in the TREPR spectra of the acetone−2-propanol system is also attributed to thermally equilibrated radicals. The self-quenching mechanism of xanthone is proposed to be an electron-transfer reaction from an excited xanthone molecule to another xanthone in the ground state.

Acknowledgements

We thank Mr B. Bhattacharjee for his help in recording the steady-state EPR spectra of the xanthone−2-propanol system and the TREPR spectra of the acetone−2-propanol system described in this work. We also thank the anonymous referee for constructive comments.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.