Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 112, 2014 - Issue 2
315
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Algebraic connectivity analysis in molecular electronic structure theory II: total exponential formulation of second-quantised correlated methods

&
Pages 213-260 | Received 19 Oct 2012, Accepted 20 May 2013, Published online: 26 Jun 2013
 

Abstract

The fundamentality of the exponential representation of a second-quantised correlated wave function is emphasised with an accent on the physical sense of cluster amplitudes as cumulants of the correlated ansatz. Three main wave function formalisms, namely, the configuration-interaction theory, the coupled-cluster approach, and the many-body perturbation theory (as well as their extensions, e.g. the equation-of-motion coupled-cluster method, multireference schemes, etc.), are represented in an exponential form, leading to a formulation of the working equations in terms of cluster amplitudes. By expressing the corresponding many-body tensor equations in terms of cluster amplitudes, we could unambiguously check connectivity types and the asymptotic behaviour of all tensors/scalars involved (in the formal limit of an infinite number of correlated particles). In particular, the appearance of disconnected cluster amplitudes corresponds to unphysical correlations. Besides, we demonstrate that the equation-of-motion coupled-cluster approach, as well as certain excited-state configuration-interaction methods, can be recast in a fully connected (exponential) form, thus breaking the common belief that all truncated configuration-interaction methods violate connectivity. Our work is based on the recently developed algebraic framework which can be viewed as a complement to the classical diagrammatic analysis.

Acknowledgements

The authors greatly acknowledge the US Air Force Office of Scientific Research (AFOSR) for the financial support. Valuable comments from unknown referees are appreciated as well. A careful examination of the paper by Prof. Marcel Nooijen, who also presented alternative proofs to some of our propositions, is deeply appreciated..

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.