371
Views
2
CrossRef citations to date
0
Altmetric
Michael Baer Festschrift

1,3,5-Tris-(4-(iso-propyl)-phenylsulfamoylmethyl)benzene as a potential Am(III) extractant: experimental and theoretical study of Sm(III) complexation and extraction and theoretical correlation with Am(III)

, , , &
Pages 2719-2727 | Received 08 Feb 2018, Accepted 06 Apr 2018, Published online: 14 May 2018
 

ABSTRACT

The problem of legacy alkaline high-level waste (HLW) both in the US and Russia, as a result of weapons production, has prompted studies of ligands for extraction of actinides, that could be possibly used in the future together with Cs extractants for combined HLW extraction processes. The tripodal trisulphonamide ligand 1,3,5-tris-(4-(iso-propyl)-phenylsulfamoylmethyl)benzene (4-iPr-tsa), which has pre-organised functional groups for An(III) binding was synthesised and studied for potential Sm(III) and Am(III) binding and extraction by theoretical (DFT) and experimental (extraction) methods (for Sm(III) only). Both theory and experiments suggest that even though this family of ligands shows promise for Ln(III) and An(III) binding with minima for complex formation, complexation is competing with hydrolysis, and extraction is only feasible in alkaline solutions, in the presence of high concentrations of nitrate ions. Nevertheless, up to 51.8% of Sm(III) was removed under optimal conditions (NaOH = 2 × 10−4 M, NaNO3 = 0.1M, [Sm]init = 5 × 10−5 M). Quantum chemical calculations demonstrate that the extraction of Sm(III) and Am(III) from the aqueous phase in the form of [M·(H2O)4·(OH)2·(NO3)] to the organic phase in the form of [M·4-iPr-tsa·(H2O)3] is thermodynamically favourable. Theory also shows that Sm(III) is a reasonably good surrogate for Am(III), as the optimised structures of the Sm and Am complexes show remarkable similarities. Even though the ligand was designed with the goal of introducing favourable cation–arene interactions, along with the expected N-binding mode of the ligand in its deprotonated form, it was found that these cation–arene interactions are rather weak in this case, and coordination with O atoms of the sulphonamide, and external water molecules, is favoured instead.

GRAPHICAL ABSTRACT

Acknowledgements

The authors thank Ms Bemsi Ajoff and Ms Sierra Harris for synthetic assistance.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the US Department of Energy Minority Serving Institution Partnership Program (MSIPP) managed by the Savannah River National Laboratory under Savannah River Nuclear Solutions (SRNS) contract Basic Ordering Agreement (BOA) No: 541, Task Order Authorization (TOA) No. 0000272357.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.