Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 118, 2020 - Issue 3
77
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Theoretical evaluation to improve the performance of composite wax powder: cooperativity effects involving the strong Na+···π/σ and weak hydrogen-bonding interactions in the complex of graphene oxide with Na+ and CH4

, , , , &
Article: e1612106 | Received 27 Jul 2018, Accepted 19 Apr 2019, Published online: 05 May 2019
 

ABSTRACT

To provide a reasonable design scheme to improve the performance of composite wax powder, the ternary complex Na+···graphene oxide (GO)···CH4 was selected as a model system to evaluate the cooperativity effect between the Na+···σ/π and H-bonding interactions in the composite wax powder doped with GO at the M06-2X/6-311++G(2d,p) and MP2/6-311++G(2d,p) levels. The cooperativities in GO···(CH4)n (n = 1∼10) and thermodynamic cooperativity effects in Na+···GO···CH4 were also investigated. Although the changes of the absolute values of H-bonding interactions were slight, from those of relative values, the influence of the Na+···π or Na+···O interaction on the C–H···π, O–H···C or C–H···O interaction was notable upon the formation of ternary systems. The anti-cooperativity effect was found in the cyclic structure, while the cooperativity effect appeared in the linear conformation. The Na+···σ/π and H-bonding interactions as well as cooperativities in Na+···GO···CH4 were stronger than those in Na+···coronene···CH4. The formation of Na+···GO···CH4 is a thermodynamic cooperativity process driven by the enthalpy change. Therefore, it could be inferred that, when graphite powder or carbon black was replaced by GO, the compatibilities could be strengthened among various components, and thus the performance of casting moulds could be improved. Atoms-in-molecules (AIM) and reduced density gradient (RDG) analyses confirmed the cooperativity effect and revealed the nature of the improved performance of composite wax powder with GO. The GO···(CH4)n (n = 1∼3) are positively cooperative, while the negative cooperativity is shown when n = 4∼10.

GRAPHICAL ABSTRACT

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.