Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 37, 1979 - Issue 5
85
Views
128
CrossRef citations to date
0
Altmetric
Original Articles

Finite-field calculations of molecular polarizabilities using field-induced polarization functions: second- and third-order perturbation correlation corrections to the coupled Hartree-Fock polarizability of H2O

, , , &
Pages 1543-1572 | Received 05 Jun 1978, Published online: 23 Aug 2006
 

Abstract

Ordinary Rayleigh-Schrödinger perturbation theory with Møller-Plesset (RSMP) partitioning is used to calculate second- and third-order correlation corrections to the CHF polarizability and dipole moment of the water molecule by a finite-field procedure. [2/1] Padé approximants are found to be useful in accelerating the convergence of the property perturbation expansions. Field-induced polarization functions suitable for polarizability calculations are determined. The average polarizability calculated, neglecting vibrational averaging, with Dunning's (9s5p/4s-4s2p/2s) contracted GTO basis set augmented by field-induced 1s1p2d/1p polarization functions is within 3 per cent of the experimental result. Correlation corrections to the dipole moment and polarizability of the water molecule calculated by the finite-field RSMP and single + double excitation CI(SDCI) methods for the same basis set are found to be in close agreement. The RSMP approach has the advantages of being size-consistent and of being capable of greater efficiency than the SCDI method. Comparative calculations carried out using Epstein-Nesbet partitioning show that through third order RSEN correlation perturbation expansions for the dipole moment and polarizability are less rapidly convergent than RSMP expansions. However, reasonable accord with RSMP results can be achieved by using [2/1] Padé approximants to accelerate the convergence of RSEN energy perturbation expansions. The convergence of RSMP property correlation expansions based on the zeroth-order uncoupled-Hartree-Fock (UCHF) and coupled-Hartree-Fock (CHF) approximations are compared through third order. Whereas the CHF + RSMP expansions are for practical purposes fully converged, the UCHF + RSMP expansions are not adequately converged.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.