Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 75, 1992 - Issue 5
230
Views
36
CrossRef citations to date
0
Altmetric
Original Articles

The frequency and wavelength dependent dielectric permittivity of water

&
Pages 1065-1088 | Received 17 Jun 1991, Accepted 29 Oct 1991, Published online: 23 Aug 2006
 

Abstract

The static and dynamic dielectric behaviour of a model of liquid water is studied in the supercooled region, as a function of wavelength. The data used for this analysis were obtained in a previous molecular dynamics simulation of a sample of 343 water molecules, modelled by the TIP4P potential, at 245 K. A substantial wavelength dependence of the static dielectric permittivity is observed, while the value found for ϵ(0) seems to indicate that the TIP4P model is able to account qualitatively for the increase of dielectric constant upon temperature decrease, as found in real water. The time correlation function of the longitudinal and transverse components of the dipole density as well as that of the individual and total dipole moment is also calculated, to relate collective dielectric properties to the single molecule relaxation. The collective and single molecule dielectric relaxation times are obtained and their ratio seems to be close to a static property, namely the short-range orientational correlation factor, g s (k). The frequency dependence of the dielectric constant is compared with previous simulation and experimental values. Furthermore, the longitudinal and transverse components of the hydrogen current are discussed. The molecular symmetry relates the latter properties to the corresponding component of the dipole density in the frequency range 80–200 THz, typical of the librational motions of water. From these results, a simple and unifying picture of the dynamics underlying the three dielectric bands of water in the frequency range 1–200 THz emerges.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.