Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 97, 1999 - Issue 7
57
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

SAFT-D theory for hard sphere and hard disc chain fluids

&
Pages 907-912 | Published online: 04 Mar 2011
 

SAFT-dimer (SAFT-D) theory is reformulated to yield an improved equation of state for the hard sphere chain fluid. Two sets of the equation of state are proposed by employing Chiew's expressions for the contact values of the m hard sphere site-site correlation function g(σ). Comparison with molecular simulation data shows that the improved SAFT-D equation of state predicts the compressibility factor more accurately than Ghonasgi and Chapman's equation of state. It has been shown that SAFT-dimer theory can be applied readily to fused hard sphere chain fluids by considering the correct value of the effective chain length (m*). SAFT-dimer theory is also extended to the 2-dimensional tangent and fused hard disc chain fluids. For the fused hard disc dimer fluid, the SAFT equation of state is found to be more accurate than the Boublik hard disc dimer equation of state. For tangent hard disc chain fluids, the results obtained from SAFT-dimer theory are compared with Monte Carlo results for 5-mers and with GFD theory for 4-mers, 8-mers and 16-mers.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.