111
Views
1
CrossRef citations to date
0
Altmetric
Technical Papers

Transient System Thermal-Hydraulic Assessment of Advanced Uranium- and Thorium-Based Fuel Bundle Concepts for Potential Use in Pressure Tube Heavy Water Reactors—I: Two-Channel Analyses

, , , , &
Pages 469-493 | Received 21 Feb 2020, Accepted 23 Jun 2020, Published online: 27 Nov 2020
 

Abstract

The use of advanced uranium-based and thorium-based fuel bundles in pressure tube heavy water reactors (PT-HWRs) has the potential to improve the utilization of uranium resources while also providing improvements in performance and safety characteristics of PT-HWRs. Previous lattice physics and core physics studies have demonstrated the feasibility of using such advanced fuels; however, thermal-hydraulic (T-H) studies are required to confirm that these advanced fuels will have adequate T-H safety margins. Preliminary system T-H transient simulations have been performed for a 700-MW(electric)–class PT-HWR in a postulated loss-of-coolant accident (LOCA) using the CATHENA code. One purpose of this work was to demonstrate that such simulations of a PT-HWR with advanced fuels could be set up and executed successfully in a CATHENA transient simulation model. The other purpose was to evaluate the peak fuel sheath and fuel centerline temperatures in two designated fuel channels containing advanced uranium-based or thorium-based fuel during a LOCA transient event. In the CATHENA simulation models, a PT-HWR core is fueled with conventional 37-element natural uranium fuel bundles in 378 out of 380 fuel channels while two designated fuel channels, the channel with the highest total power and the channel containing the bundle with the highest power level, are filled with various types of advanced fuels. Results indicate that setting up these models is feasible and that the predicted peak fuel centerline temperatures and peak sheath temperatures for the advanced fuel channels are well below the fuel melting points and the rapid oxidation temperature for the Zircaloy-4 sheath/clad (~1200°C), respectively. These preliminary results provide confidence that the advanced fuels will likely have adequate T-H safety margins in a transient LOCA event in a PT-HWR. These results set the stage for more detailed and comprehensive system T-H models of PT-HWRs fueled entirely with advanced uranium-based or thorium-based fuels.

Acknowledgments

The authors extend their sincere thanks to the following staff at CNL CRL for their help and assistance: Songyu Liu, Nusret Aydemir, Sourena Golesorkhi, Geoffrey W. R. Edwards, Geoffrey Waddington, Dave Wang, and Natasha Lacelle. This study at CNL was funded by AECL on behalf of the Government of Canada, under the auspices of the Federal Nuclear Science and Technology Program.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 439.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.