100
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Removal Effectiveness for Washing Ce(IV), U(VI), and Zr(IV) Ions from Contaminated Purex Solvent by Hydrazine Carbonate

, , , , &
Pages 1373-1381 | Received 19 Jul 2022, Accepted 03 Apr 2023, Published online: 12 May 2023
 

Abstract

The contaminated solvent from the Purex process is washed with alkaline detergents such as sodium carbonate, which generates a large amount of secondary wastes. Therefore, hydrazine carbonate as a salt-free reagent deserves to be studied in depth. In this study, the Ce(IV), U(VI), and Zr(IV) metal ions in organic phases containing dibutyl phosphate (HDBP) of 30% tributyl phosphate (TBP)–dodecane were washed with hydrazine carbonate. The effects of the oscillation time (1 to 15 min); temperature (25°C to 85°C); cumulative number of washes (one to four times); mass fraction of hydrazine carbonate (0.1% to 20%); volume ratio of the aqueous phase to the organic phase (0.2 to 5); HDBP concentration (0 to 0.4 M); HNO3 concentration (0.05 to 8 M); and concentration of Ce(IV), U(VI), and Zr(IV) metal ions on the removal percentages of Ce(IV), U(VI), and Zr(IV) metal ions in polluted solvents were studied. The results showed that when the organic phase containing 0.02 M HDBP was washed three times with 5% hydrazine carbonate at 25°C, the removal percentages of the Ce(IV), U(VI), and Zr(IV) ions were 96%, 98%, and 94%, respectively. Meanwhile, the retention concentrations of the three in the organic phase were 35, 28, and 78 mg/L, respectively. The increase of the mass fraction of hydrazine carbonate enhances the removal of the metal ions from the organic phase into the aqueous phase. High acid is not conducive to alkaline washing of metal ions. The increase of HDBP concentration not only promotes extraction but also increases the retention capacity of the organic phase and has the most significant effect on Zr(IV). U(VI) promotes the preferential washing of Zr(IV) while Ce(IV) increases the metal retention concentration of Zr(IV) in the organic phase.

Acknowledgments

The authors would like to acknowledge the funding support of the basic research on the mechanism of uranium dioxide dissolution and the extraction and separation of uranium and plutonium in the alkaline system of spent fuel reprocessing (U1967219).

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 439.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.