607
Views
19
CrossRef citations to date
0
Altmetric
Technical Papers

Consistent pCMFD Acceleration Schemes of the Three-Dimensional Transport Code PROTEUS-MOC

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 828-853 | Received 14 Sep 2018, Accepted 17 Dec 2018, Published online: 07 Feb 2019
 

Abstract

This paper presents the new acceleration schemes implemented in the three-dimensional (3-D) transport solver PROTEUS-MOC in conjunction with the fixed-point iteration (FPI) methods based on a single generalized minimal residual (GMRES) iteration and one or two transport sweeps per group in each outer iteration. In order to adopt a FPI scheme that employs only one or two inner iterations, single- and two-level consistent partial current–based coarse-mesh finite difference (pCMFD) acceleration methods were implemented to remove the instability problem of the consistent coarse-mesh finite difference (CMFD) method encountered when the inner iteration convergence is not sufficiently tight. In the spatial two-level acceleration method to speed up the lower-order diffusion calculations, the first level solves a fine-mesh finite difference fixed-source problem and the second level solves a CMFD eigenvalue problem. The implemented acceleration schemes were tested using the C5G7 benchmark problems, a critical core configuration of the Transient Reactor Test Facility (TREAT), and a C5G7 transient benchmark problem. Numerical test results showed that the consistent pCMFD acceleration is always stable even for the FPI methods with one inner iteration and that the single transport sweep method is always more efficient than the single GMRES iteration method. It was also observed that the two-level pCMFD acceleration in conjunction with the FPI with single transport sweep per outer iteration is very effective in reducing the number of outer iterations and the lower-order diffusion calculation time. Compared to the current iteration scheme of PROTEUS-MOC with fully converged GMRES iteration without acceleration, this acceleration reduced the total computational time by factors of 33.7, 19.9, and 26.0 for the two-dimensional C5G7, 3-D C5G7, and TREAT M8CAL criticality problems, respectively. The gain was even much larger for transient fixed-source problems (TFSPs) that are near critical. The speedup factor was 100 for one TFSP with subcriticality level of 40 mk and 519 for another TFSP with subcriticality level of 9 mk.

Acknowledgments

This research is being performed using funding received from the U.S. Department of Energy Office of Nuclear Energy’s Nuclear Energy University Program. The first author would like to thank Yunlin Xu at the University of Michigan for his very helpful discussions on the HO/LO algorithm.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 409.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.