349
Views
3
CrossRef citations to date
0
Altmetric
Technical Papers

Key Results from Detailed Nondestructive Examinations of 25 Pressurized Water Reactor High Burnup Spent Nuclear Fuel Rods

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 884-902 | Received 07 Dec 2018, Accepted 19 Jan 2019, Published online: 26 Feb 2019
 

Abstract

The High Burnup Spent Fuel Data Project, sponsored by the U.S. Department of Energy Office of Nuclear Energy, is focused on understanding the effects of long-term storage and transportation on high burnup (HBU) (>45 GW days per tonne uranium) light water reactor fuel. The project includes 32 HBU spent nuclear fuel (SNF) assemblies (the project assemblies) that are stored in a typical independent spent fuel storage installation (ISFSI) and 25 “sister rods”—9 SNF rods that were removed from the fuel assemblies prior to insertion to the ISFSI and 16 SNF rods removed from similar HBU assemblies. The sister rods provide a baseline of the condition of the HBU rods before loading, drying, and long-term dry storage. The project assemblies will be inspected after 10 years, and the physical state of the stored rods will be compared with the condition of the sister rods to identify any changes in physical properties during the dry storage period. This work focuses on key results from the nondestructive postirradiation examinations of the sister rods and summarizes the results of detailed visual examinations, gamma scans, dimensional measurements, and eddy current liftoff measurements of the combined Chalk River unidentified deposits and oxide layer on the waterside surface of the rod. The data are used to calculate fuel rod and pellet stack growth rates, estimated remaining fuel rod plenum volumes, and the percentage change in fuel rod cladding diameter.

Acknowledgments

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy (DOE). The U.S. government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). This work was also supported by DOE [contract AF5861020].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 409.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.