339
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers

Validation of Continuous-Energy ENDF/B-VIII.0 16O, 56Fe, and 63,65Cu Cross Sections for Nuclear Criticality Safety Applications

, , &
Pages 412-436 | Received 10 Jun 2020, Accepted 26 Sep 2020, Published online: 23 Nov 2020
 

Abstract

Recently completed cross-section evaluations sponsored in part by the Nuclear Criticality Safety Program were incorporated into the 2018 release of the ENDF/B-VIII.0 cross-section library. Evaluated isotopes of interest to the nuclear data and criticality safety community include 16O, 56Fe, and 63,65Cu. For performance validation, benchmark models defined in the International Criticality Safety Benchmark Evaluation Project Handbook were selected based on energy-integrated keff sensitivities to total cross sections of interest and compared with experimental values. Of the 102 benchmark configurations that were utilized, 63 are sensitive to 16O, 32 sensitive to 63,65Cu, and 25 sensitive to 56Fe. Selected benchmarks were modeled in SCALE 6.2.3 Criticality Safety Analysis Sequence (CSAS) continuous-energy Monte Carlo keff calculations with ENDF/B-VII.1, with a hybrid ENDF/B-VII.1 with ENDF/B-VIII.0 data substituted for individual isotopes of interest, and with ENDF/B-VIII.0. ENDF/B-VIII.0 showed improved agreement with experimental keff for 56Fe, 63Cu, elemental copper, and full library substitution while producing lessened agreement for 16O and 65Cu. With full library and isotope-specific ENDF/B-VIII.0 performance, a best-case ENDF library was formed by excluding underperforming isotopes’ ENDF/B-VIII.0 data, reverting 16O and 65Cu cross sections to ENDF/B-VII.1. This resulted in the average relative deviation between calculated and experimental data improving from 1.45σ for the ENDF/B-VIII.0 library to 1.32σ for the best-case library, relative to benchmark uncertainty.

View addendum:
ADDENDUM: Validation of Continuous-Energy ENDF/B-VIII.0 16O, 56Fe, and 63,65Cu Cross Sections for Nuclear Criticality Safety Applications

Acknowledgments

This work was supported by the NCSP, funded and managed by the National Nuclear Security Administration for the U.S. Department of Energy.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 409.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.